# 2015 SPM Exam Timetable

Good Luck to all the SPM students! =)

Jadual Waktu Peperiksaan Bertulis SPM 2015

First week

2nd November, Monday – BM Kertas 1&2, Pendidikan Seni Visual- Teori Seni
3rd November, Tuesday – English Paper 1&2, Pendidikan Al-Quran dan Al-Sunnah
4th Novermber, Wednesday – Sejarah Kertas 1& 2
5th November, Thursday – Sejarah Kertas 3, Bahasa Arab Kertas 1

Second week
16th November, Monday – Maths Paper 1&2, Tasawwur Islam Kertas 1, Bible Knowledge
17th November, Tuesday – Pendidikan Islam Kertas 1&2, Pendidikan Moral Kertas1, Pendidikan Syari’ah Islamiah Kertas 1&2, Tasawwur Islam Keras 2
19th November, Thursday – Prinsip Perakaunan Kertas 1&2, Bahasa Arab Kertas 2

Third week
23rd November, Monday – Pendidikan Seni Visual- Seni Halus Kertas 2, Pendidikan Muzik Kertas 1, Reka Cipta Kertas 1
24th November, Tuesday – Additional Maths Paper 1&2
25th November, Wednesday – Science Paper 1&2, Physic Paper 1&2&3
26th November, Thursday – Chemistry Paper 1&2&3, Additional Science Paper 1&2&3
Fourth Week

30th November, Monday – Perdagangan Kertas 1&2, Biology Paper 1&2&3
1st December, Tuesday – Literature in English, Kesusasteraan Melayu, Kesusasteraan Cina, Kesusasteraan Tamil, Geografi Kertas 1&2
2nd December, Wednesday – Lukisan Kejuruteraan, Ekonomi Asas Kertas 1&2
3rd December, Thursday – Bahasa Cina Kertas 1&2, Bahasa Tamil Kertas 1&2

Fifth Week

7th December, Monday – Sains Pertanian Kertas 1&2, Ekonomi Rumah Tangga Kertas 1&2, Information and Communication Technology Paper 1
8th December, Tuesday – English for Science and Technology Paper 1&2

# Indices and Logarithms

Indices

$\text{Positive Index: }{{a}^{n}},a\ne 0$    $eg:{{2}^{3}},{{4}^{2}}$

$\text{Negative Index: }{{a}^{-n}}=\frac{1}{{{a}^{n}}}$   $eg:{{2}^{-3}}=\frac{1}{{{2}^{3}}}=\frac{1}{8}$

$\text{Zero Index: }{{a}^{0}}=1,a\ne 0$    $eg:{{2}^{0}}=1$

Fractional Indices:

${{a}^{\frac{1}{n}}}=\sqrt[n]{a},a\ne 0$       $eg:{{8}^{\frac{1}{3}}}=\sqrt[3]{8}=2$

${{a}^{\frac{m}{n}}}={{(\sqrt[n]{a})}^{m}},a\ne 0$   $eg:{{8}^{\frac{2}{3}}}={{(\sqrt[3]{8})}^{2}}={{(2)}^{2}}=4$

Law of Indices:

$\text{Rule 1: }{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$   $eg:{{2}^{2}}\times {{2}^{3}}={{2}^{2+3}}={{2}^{5}}=32$

$\text{Rule 2: }{{a}^{m}}\div {{a}^{n}}={{a}^{m-n}}$   $eg:{{2}^{4}}\times {{2}^{2}}={{2}^{4-2}}={{2}^{2}}=4$

$\text{Rule 3: }{{({{a}^{m}})}^{n}}={{a}^{m\times n}}$      $eg:{{({{2}^{2}})}^{3}}={{2}^{2\times 3}}={{2}^{6}}=64$

# Formulae that will be given in SPM Add Maths

These are the formulae that will be given to help you to answer the SPM Additional Maths Questions. However, more important is that you know how to apply those formulaes to solve your questions. Buy some exercises from the bookstore and work on the questions everyday and you will master all those formulaes. Basically there are divided into 5 categories:

1. Algebra
2. Calculus
3. Statistics
4. Geometry
5. Trigonometry

# SPM Questions for Simultaneous Equations

At least one simultaneous equations question (5 marks) will be coming out in the SPM paper 2, section A.

1. Substitution (SPM 2005, SPM2007)
2. Using Formulae (SPM 2006, SPM 2009)

# Simultaneous Equation

Simultaneous equation problem could be solved by using

1. Substitution
2. Equating Coefficients
3. Using Formulae

# Wikipedia Donation

Recently make a small contribution to Wikipedia to show appreciation to the website which helped me a lot during my learning journey.

You could make a BIG difference even with a small contribution! You could donate via credit card or PayPal.

Please click the buttons to find out.

# SPM Questions for Quadratic Functions

1. The Basic of quadratic functions (SPM 2010)
2. Determine max and min values of quadratic function (SPM2009)
3. How to sketch the graph of quadratic functions (SPM2010)
4. How to find the range of values of x in Quadratic inequalities (2007, 2006)

This topic is closely related to the topic of quadratic equations. We will discuss further  on 4 subtopics below:

1. The Basic of quadratic functions
2. Determine max and min values of quadratic function
3. How to sketch the graph of quadratic functions
4. How to find the range of values of x in Quadratic inequalities